What does pelvic mean
Pelvic Definition & Meaning - Merriam-Webster
pel·vic ˈpel-vik
: of, relating to, or located in or near the pelvis
pelvic noun
Example Sentences
Recent Examples on the Web For those who do, heavy menstrual bleeding, long periods, pelvic pain, frequent urination, constipation and back and leg pain are most common. —Vanessa Etienne, Peoplemag, 4 Nov. 2022 Issues with muscles, ligaments, or bones in the pelvic region can cause pain. —Kaitlyn Pirie, Good Housekeeping, 25 Sep. 2022 Having endured penile pain, swelling and discharge during the infection, the attorney has since experienced pain in his pelvic area and the frequent need to urinate. —Benjamin Ryan, NBC News, 25 Sep. 2022 Wiebe, who has over two decades of experience in pelvic and abdominal health, recommends belly breathing exercises to retrain your brain and body to expand naturally. —Jenna Ryu, USA TODAY, 21 Oct. 2022 Possible risks: Damage to the bowel, bladder or major blood vessels; bad reaction to anesthesia, wound infection, pelvic or abdominal pain and unwanted pregnancy if the procedure fails. —Julie Washington, cleveland, 11 July 2022 This screening is a CT scan that images your entire pelvic and abdominal area. —Kathryn Watson, SELF, 1 Apr. 2022 The 32-year-old’s abdominal and pelvic scan at Avera St. Luke’s cost $6,422, the highest out of a wide range of rates the Avera hospital charges for that service based on the new data. —WSJ, 6 July 2021 The city’s medical examiner had been unable to identify the pelvic and femur bones, burned beyond recognition. —Washington Post, 30 Apr. 2021 See More
These example sentences are selected automatically from various online news sources to reflect current usage of the word 'pelvic. ' Views expressed in the examples do not represent the opinion of Merriam-Webster or its editors. Send us feedback.
Word History
First Known Use
1799, in the meaning defined above
Time Traveler
The first known use of pelvic was in 1799
See more words from the same year
Dictionary Entries Near
pelvicPelvetia
pelvic
pelvic cavity
See More Nearby Entries
Cite this Entry
Style
MLAChicagoAPAMerriam-Webster
“Pelvic.” Merriam-Webster.com Dictionary, Merriam-Webster, https://www. merriam-webster.com/dictionary/pelvic. Accessed 17 Dec. 2022.
Copy Citation
Kids Definition
pelvic
adjective
pel·vic ˈpel-vik
: of, relating to, or located in or near the pelvis
pelvic bones
Medical Definition
pelvic
1 of 2 adjective
pel·vic ˈpel-vik
: of, relating to, or located in or near the pelvis
pelvic organs
pelvic pain
pelvic
2 of 2 noun
: a pelvic part
More from Merriam-Webster on
pelvicNglish: Translation of pelvic for Spanish Speakers
Britannica English: Translation of pelvic for Arabic Speakers
Last Updated: - Updated example sentences
Subscribe to America's largest dictionary and get thousands more definitions and advanced search—ad free!
Merriam-Webster unabridged
Anatomy, Abdomen and Pelvis, Female Pelvic Cavity - StatPearls
Introduction
The pelvic cavity is a bowl-like structure that sits below the abdominal cavity. The true pelvis, or lesser pelvis, lies below the pelvic brim (Figure 1). This landmark begins at the level of the sacral promontory posteriorly and the pubic symphysis anteriorly. The space below contains the bladder, rectum, and part of the descending colon. In females, the pelvis also houses the uterus, fallopian tubes, and ovaries. Knowledge of anatomy unique to females is essential for all clinicians, especially those in the field of obstetrics and gynecology.
Structure and Function
The uterus sits in the center of the female pelvic cavity (Figure 2.) The most common position of the uterus in the pelvic cavity is anteverted and anteflexed.[1] "Version" refers to the angle between the cervix and the vagina. An anteverted uterus appears "tipped forward" in the pelvic cavity. A retroverted uterus is "tipped backward." Retroversion is a normal variant but can lead to dyspareunia. Additionally, retroversion of a gravid uterus correlates with higher rates of vaginal bleeding and spontaneous abortion. [2]
"Flexion" is the term for the angle between the cervix and uterine body. Anteflexed means the uterus is bent forward. Retroflexed means the uterus bends backward. Occasionally, retroflexion is seen after cesarean section and may be due to scar tissue that attaches the uterine body to the abdominal wall, causing the fundus to bend posteriorly.[3] However, the data supporting this theory is limited.
Anterior to the uterus is the bladder, with rectum located posteriorly. Between the uterus and the rectum is the recto-uterine space, also known as the posterior cul-de-sac. It is a potential space prone to fluid collection. Small amounts of physiologic fluid accumulate during ovulation and menses. Pathologic causes of fluid collection in the recto-uterine pouch include pelvic abscesses, drop metastasis from gastrointestinal malignancies, and endometriosis. In certain situations, if fluid accumulation is severe, this space can be drained by performing a culdocentesis, which is accomplished by inserting a needle through the posterior fornix of the upper vagina to access the posterior cul-de-sac.
The posterior cul-de-sac communicates with the retroperitoneal space of the abdomen via the right and left epiploic gutters. The right gutter leads to the hepatorenal space, also known as Morrison's pouch. The right epiploic gutter also allows the spread of pelvic pathogens into the subphrenic space. Occasionally infection of the subphrenic space can occur, leading to adhesions on the capsule of the liver. This pathology is known as Fitz-Curtis-Hugh syndrome or gonococcal perihepatitis.
The left epiploic gutter leads to the splenorenal pouch. Due to the leftward position of the rectum, pelvic pathology is less likely to spread to the abdomen via the left epiploic communication.[4]
Embryology
The organs of the female reproductive tract each have a unique embryological origin. The exact embryological timeline in which these organs develop is still open to debate because most embryologic studies use animal models with different gestational ages. However, there is a consensus that the ovaries are the first to develop. They arise from the surface of the mesonephros at the gonadal ridge.[5] Later in development, the ovaries descend into the pelvis with guidance from the gubernaculum. The inferior aspect of the gubernaculum subsequently becomes the round ligament of the uterus and terminates at the labia majora.
In females, the absence of a Y chromosome allows the uterus to form. It derives from the Müllerian ducts, also known as the paramesonephric ducts. These ducts fuse to form the uterus, fallopian tubes, and cervix. Some studies suggest that the paramesonephric ducts also give rise to the upper vagina while other studies indicate that the vagina exclusively derives from the urogenital sinus epithelium.[6] In males, a substance coded for on the Y chromosome, known as the anti-Mullerian hormone, prevents the formation of internal female reproductive organs.
Blood Supply and Lymphatics
Arterial
The anterior branch of the internal iliac artery supplies most of the female reproductive organs. The uterine artery supplies the majority of the uterus (Figure 3). The lower uterine segment has a dual blood supply that includes branches of the vaginal artery. The ovaries are an exception because they receive blood from the ovarian arteries, which descend from the abdominal aorta.
The superior vesicle artery supplies the upper bladder. In females, the vaginal artery supplies the lower bladder. Both arteries are also branches of the anterior branch of the internal iliac artery.
The rectum receives vascular supply via three vessels. The superior rectal artery is the terminal branch of the inferior mesenteric artery. The middle rectal is a branch of the internal iliac artery. The inferior rectal is a branch of the pudendal artery.
Venous
The venous supply of pelvic organs follows the arterial supply. The uterine vein receives blood from the uterus and drains into the internal iliac vein. The ovarian veins receive blood from the ovaries. The right ovarian vein drains its contents directly into the inferior vena cava, while the left ovarian vein drainage is into the left renal vein. The increased length of the left ovarian vein makes it more susceptible to compression, especially during pregnancy.[7] Ovarian vein compression can lead to pelvic venous compression syndrome. The resulting pelvic vasculature congestion is a cause of chronic pelvic pain and may occur in non-pregnant patients as well.
The left-sided venous supply is also unique because the left internal iliac artery travels from its right-sided origin at the inferior vena cava towards a leftward destination in the pelvis. The longer path makes the left internal iliac more prone to compression and may explain why venous thromboembolism in pregnancy most commonly occur in the left iliac and iliofemoral veins.[8] Additionally, the leftward position of the sigmoid colon causes a gravid uterus to tip toward the right, which is thought to increase the risk of iliac vessel compression further.
Lymphatics
The lymphatic network of the pelvis is complex but is essential to understand when staging and treating gynecologic malignancies. Generally, the pelvic organs drain into the internal and external iliac lymph nodes (Figure 5).
The lymphatic drainage of the uterus is more complicated and remains somewhat ambiguous.[9] Some researchers suggest it may involve pelvic and para-aortic lymph nodes.[10] A more recent study from 2017 suggests that the uterus has two primary routes of lymphatic drainage, an upper pathway that drains to the external iliac and/or obturator lymph nodes and a lower pathway that drains to the internal iliac and/or presacral lymph nodes.[11]
The ovaries are an exception to the other female pelvic organs because they do not drain to pelvic lymph nodes. Their lymphatic drainage follows their blood supply; therefore they drain directly to the paraaortic lymph nodes.
Nerves
The female reproductive organs have both autonomic and sensory innervation. Beginning with the autonomic nervous system, sympathetic fibers exit at the level of T10 to L2 to form the superior hypogastric plexus, which divides into the left and right hypogastric nerve at approximately the level of the sacral promontory. The parasympathetic nerve fibers exit at the level of S2 to 4 and meet up with the sympathetic nervous system at the right and left hypogastric nerves. The right and left hypogastric nerves then migrate inferiorly to form the inferior hypogastric plexus. After this point, the nerve fibers follow blood vessels to their target organs. The inferior hypogastric plexus also receives sensory information from the uterus.
The ovarian nerve innervates the ovary. Although previously thought only to contain sensory fibers, recent animal studies suggest this nerve also carries autonomic fibers that may play a role in hormone secretion and constriction of ovarian vessels.[12][13][14] Recent studies suggest that the cervix and upper vagina also have autonomic innervation; however, the role of autonomic innervation in this region remains unclear.[15][16] Sensory innervation to the cervix and upper vagina has been more widely studied and receives supply by the pelvic splanchnic nerves. The pudendal nerve supplies the sensory innervation of the lower vagina. Pudendal nerve blocks can be used to provide local pain relief to laboring women by using the ischial spines as landmarks. Although once the treatment of choice for labor pain, it is no longer commonly used due to the widespread use of epidural anesthesia.[17]
Muscles
The inferior border of the pelvic cavity is the pelvic diaphragm. It is made up of a group of muscles. From posterior to anterior, these muscles include:
Piriformis
Coccygeus
Iliococcygeus
Pubococcygeus
Puborectalis
The fibers of the iliococcygeus, pubococcygeus, and puborectalis make up the levator ani muscle. Because of its proximity to the vagina, the pubococcygeus and puborectalis are the most commonly injured muscles during vaginal deliveries.[18] The obturator internus muscles make up the peripheral borders of the pelvis but are not among the muscles of the pelvic floor.
Ligaments
Three ligaments anchor the uterus. The uterosacral ligament supports the uterus posteriorly, and the pubocervical ligament anchors the uterus anteriorly. The transverse cervical ligament supports the uterus laterally. Unlike the anterior and posterior planes that contain the bladder and rectum respectively, the lateral plane lacks supporting structures other than the transverse cervical ligament. It is for this reason that this ligament also has the name of the "cardinal" ligament. The transverse ligament also differs from other supporting ligaments of the uterus because it is the only ligament that contains a vasculature structure, the uterine artery.
The ovary also has ligamentous support. The utero-ovarian ligament, also known as the ovarian ligament, extends from the ovary to the uterine body. The ovary is supported superiorly by the infundibulopelvic ligament, also known as the suspensory ligament of the ovary. This ligament descends from the lateral aspect of the abdominal wall and contains the ovarian neurovascular bundle.
The broad ligament overlies the uterus, fallopian tubes, and ovaries. It is the inferior most extension of the parietal peritoneum and has three divisions based on location. The lateral most aspect of the broad ligament is the "mesovarium" and overlies the ovaries. The "mesosalpinx" covers the fallopian tubes. The largest portion of the broad ligament is the "mesometrium" and overlies the uterus.
Physiologic Variants
The uterine and ovarian arteries supply the majority of the female reproductive tract. The uterine artery, like many pelvic arteries, has a variable presentation. It most commonly arises from the anterior branch of the internal iliac artery and shares a common trunk with the obliterated umbilical artery.[19] One study that analyzed imaging from 218 patients reported this presentation in 80.7 % of cases.[20] The same study reported the uterine artery branched directly off of the internal iliac in 13.6% of cases, making this the most common variation. The second and third most common variations they found were direct branching from the superior gluteal artery and internal pudendal artery, respectively. These variations are necessary to be aware of during surgery as well as during uterine artery embolization.
Ovarian artery variants are less common, but case reports exist that detail unique aberrations. One case report found an aberrant ovarian artery arising from the external iliac artery.[21] Another study reported an ovarian artery that branched directly from the common iliac artery.[22] These variations are thought to be due to abnormal descent of the ovaries into the pelvis during embryological development and may also correlate to other differences.[23]
Surgical Considerations
Several anatomical relationships are essential for surgeons to be aware of when operating in the female pelvis. For example, during a cesarean section, the bladder should always be identified to avoid iatrogenic cystotomy. This cautionary measure is especially the case in patients that have had a prior cesarean section because scar tissue can cause the bladder to adhere to the anterior uterine wall.
During any uterine surgery, identification of the uterine artery is vital. If cut, massive bleeding can ensue. During abdominal hysterectomies, the uterine artery is typically “skeletonized” so that its path along the uterus is clearly identifiable to the operating team.
If hemorrhage does occur, knowledge of pelvic vasculature becomes crucial. If the bleeding vessel cannot be clearly identified, the internal iliac should be clamped below the origin of the superior gluteal artery. This method is preferred so that necrosis of the gluteal muscle does not occur.
When operating deeper in the female pelvis, identification of the ureter is also crucial. There are three major locations where this structure may exist. Beginning superiorly, the ureters descend into the pelvis posterior to the infundibulopelvic ligaments. The ureters maintain this relationship until approximately the level of the iliac vessels, where they begin to travel more medially.
As the ureters continue to travel inferiorly, the next important landmark is the transverse cervical ligament. The ureters dive under this structure. Awareness of this relationship is of considerable importance when performing a hysterectomy. A popular pneumonic used by medical students is, "water under the bridge."
After passing under the transverse cervical ligament, the ureters continue to travel medially toward the bladder. Their insertion into the inferior aspect of the bladder is the third major location they should undergo positive identification intraoperatively. The insertion points are also visible from inside the bladder itself, during cystoscopy; this is sometimes performed after pelvic surgery if an injury to the bladder is suspected.
Injury to the bladder can also occur during pelvic surgery from the vaginal approach. When operating in this plane, injury to the rectum is also a possibility because at this level the rectum is directly posterior to the vagina (Figure 6.) Avoiding bladder and rectal injury becomes increasingly difficult if the patient has pelvic organ prolapse, such as cystocele or rectocele.
When performing surgery on the fallopian tubes, such as during a tubal ligation or tubal anastomosis, the location of the round ligament should be determined. Due to the similarity in structure and location, the round ligament can be mistaken for a fallopian tube. Unlike the round ligaments, however, the fallopian tubes have fimbriae, a characteristic can be used to differentiate between these two structures intraoperatively.
Clinical Significance
Clinical correlates related to female pelvic anatomy can be summarized as follows:
The standard position of the uterus is anteverted and anteflexed. Abnormal positioning of the uterus is associated with pathology. Retroversion, for example, is a cause of dyspareunia. Additionally, retroversion of a gravid uterus is associated with higher rates of spontaneous abortion.
The posterior cul-de-sac, located between the uterus and the rectum, is a potential space prone to fluid collection. Physiologic fluid accumulates during menses and ovulation. If fluid collection is pathologic, this space can undergo drainage via culdocentesis.
The posterior cul-de-sac communicates with the abdomen via the left and right epiploic gutters, which allows the spread of pelvic pathogens into the abdominal cavity. Due to the leftward position of the rectum, infections usual take the path of the right epiploic gutter. The right epiploic gutter leads to potential spaces surrounding the liver. These include the hepatorenal space, also known as Morrison’s pouch, and the subphrenic space. Infection of the subphrenic space secondary to a gonococcal pelvic infection is termed Fitz-Curtis-Hugh syndrome or gonococcal perihepatitis.
The increased length of the left ovarian vein makes it more susceptible to compression, especially during pregnancy. Compression of this vessel sometimes leads to pelvic venous compression syndrome and is a cause of chronic pelvic pain in both pregnant and non-pregnant patients.
Venous thromboembolism in pregnancy is most commonly left-sided and occur in the iliofemoral vessels, which is thought to be because of pelvic vessel engorgement in combination with the increased path the left iliac vein takes across the pelvis. These factors make this vessel more susceptible to compression by a gravid uterus.
Understanding the lymphatic drainage of the female reproductive tract is important when tracking the spread of gynecologic malignancies. Generally, the female reproductive organs drain to the internal and external iliac lymph nodes. A notable exception is the ovaries, which drain to the paraaortic lymph nodes.
The pudendal nerve receives sensory innervation to the lower vagina. Historically, pudendal nerve blocks were used to alleviate labor pains. However, pudendal nerve blocks are no longer commonly practiced due to the wide-spread use of epidural anesthesia.
The muscles of the pelvic floor are susceptible to injury during vaginal deliveries. The most commonly injured muscles are the pubococcygeus and puborectalis muscles due to their proximity to the vagina.
The pelvic vasculature contains many physiologic variants that are important for surgeons to know. Interventional radiologists should also be knowledgeable of variants, particularly during uterine artery embolization to treat fibroids. The uterine artery most commonly arises from the anterior branch of the internal iliac and shares a trunk with the obliterated umbilical artery. The most common variation is direct branching from the internal iliac.
Review Questions
Access free multiple choice questions on this topic.
Comment on this article.
Figure
Compilation of 6 images detailing anatomy of female pelvic cavity. Contributed by Gray's Anatomy Plates (Public Domain)
References
- 1.
Roach MK, Andreotti RF. The Normal Female Pelvis. Clin Obstet Gynecol. 2017 Mar;60(1):3-10. [PubMed: 28005593]
- 2.
Weekes AR, Atlay RD, Brown VA, Jordan EC, Murray SM. The retroverted gravid uterus and its effect on the outcome of pregnancy. Br Med J. 1976 Mar 13;1(6010):622-4. [PMC free article: PMC1639005] [PubMed: 1252851]
- 3.
Sanders RC, Parsons AK. Anteverted retroflexed uterus: a common consequence of cesarean delivery. AJR Am J Roentgenol. 2014 Jul;203(1):W117-24. [PubMed: 24951223]
- 4.
Turco G, Chiesa GM, de Manzoni G. [Echographic anatomy of the greater peritoneal cavity and its recesses]. Radiol Med. 1988 Jan-Feb;75(1-2):46-55. [PubMed: 3279472]
- 5.
Yao HH. The pathway to femaleness: current knowledge on embryonic development of the ovary. Mol Cell Endocrinol. 2005 Jan 31;230(1-2):87-93. [PMC free article: PMC4073593] [PubMed: 15664455]
- 6.
Robboy SJ, Kurita T, Baskin L, Cunha GR. New insights into human female reproductive tract development. Differentiation. 2017 Sep-Oct;97:9-22. [PMC free article: PMC5712241] [PubMed: 28918284]
- 7.
Jeanneret C, Beier K, von Weymarn A, Traber J. Pelvic congestion syndrome and left renal compression syndrome - clinical features and therapeutic approaches. Vasa. 2016;45(4):275-82. [PubMed: 27428495]
- 8.
American College of Obstetricians and Gynecologists' Committee on Practice Bulletins—Obstetrics. ACOG Practice Bulletin No. 196: Thromboembolism in Pregnancy. Obstet Gynecol. 2018 Jul;132(1):e1-e17. [PubMed: 29939938]
- 9.
Coleman RL, Frumovitz M, Levenback CF. Current perspectives on lymphatic mapping in carcinomas of the uterine corpus and cervix. J Natl Compr Canc Netw. 2006 May;4(5):471-8. [PubMed: 16687095]
- 10.
Burke TW, Levenback C, Tornos C, Morris M, Wharton JT, Gershenson DM. Intraabdominal lymphatic mapping to direct selective pelvic and paraaortic lymphadenectomy in women with high-risk endometrial cancer: results of a pilot study. Gynecol Oncol. 1996 Aug;62(2):169-73. [PubMed: 8751545]
- 11.
Geppert B, Lönnerfors C, Bollino M, Arechvo A, Persson J. A study on uterine lymphatic anatomy for standardization of pelvic sentinel lymph node detection in endometrial cancer. Gynecol Oncol. 2017 May;145(2):256-261. [PubMed: 28196672]
- 12.
Uchida S, Kagitani F. Autonomic nervous regulation of ovarian function by noxious somatic afferent stimulation. J Physiol Sci. 2015 Jan;65(1):1-9. [PMC free article: PMC4276811] [PubMed: 24966153]
- 13.
Pastelín CF, Rosas NH, Morales-Ledesma L, Linares R, Domínguez R, Morán C. Anatomical organization and neural pathways of the ovarian plexus nerve in rats. J Ovarian Res. 2017 Mar 14;10(1):18. [PMC free article: PMC5351206] [PubMed: 28292315]
- 14.
Cruz G, Fernandois D, Paredes AH. Ovarian function and reproductive senescence in the rat: role of ovarian sympathetic innervation. Reproduction. 2017 Feb;153(2):R59-R68. [PubMed: 27799628]
- 15.
Mónica Brauer M, Smith PG. Estrogen and female reproductive tract innervation: cellular and molecular mechanisms of autonomic neuroplasticity. Auton Neurosci. 2015 Jan;187:1-17. [PMC free article: PMC4412365] [PubMed: 25530517]
- 16.
Mowa CN. Uterine Cervical Neurotransmission and Cervical Remodeling. Curr Protein Pept Sci. 2017;18(2):120-124. [PubMed: 27001061]
- 17.
Schrock SD, Harraway-Smith C. Labor analgesia. Am Fam Physician. 2012 Mar 01;85(5):447-54. [PubMed: 22534222]
- 18.
Memon HU, Handa VL. Vaginal childbirth and pelvic floor disorders. Womens Health (Lond). 2013 May;9(3):265-77; quiz 276-7. [PMC free article: PMC3877300] [PubMed: 23638782]
- 19.
Peters A, Stuparich MA, Mansuria SM, Lee TT. Anatomic vascular considerations in uterine artery ligation at its origin during laparoscopic hysterectomies. Am J Obstet Gynecol. 2016 Sep;215(3):393.e1-3. [PubMed: 27287682]
- 20.
Chantalat E, Merigot O, Chaynes P, Lauwers F, Delchier MC, Rimailho J. Radiological anatomical study of the origin of the uterine artery. Surg Radiol Anat. 2014 Dec;36(10):1093-9. [PubMed: 24052200]
- 21.
Kwon JH, Kim MD, Lee KH, Lee M, Lee MS, Won JY, Park SI, Lee DY. Aberrant ovarian collateral originating from external iliac artery during uterine artery embolization. Cardiovasc Intervent Radiol. 2013 Feb;36(1):269-71. [PubMed: 22565531]
- 22.
Kim WK, Yang SB, Goo DE, Kim YJ, Chang YW, Lee JM. Aberrant ovarian artery arising from the common iliac artery: case report. Korean J Radiol. 2013 Jan-Feb;14(1):91-3. [PMC free article: PMC3542308] [PubMed: 23323036]
- 23.
Rahman HA, Dong K, Yamadori T. Unique course of the ovarian artery associated with other variations. J Anat. 1993 Apr;182 ( Pt 2)(Pt 2):287-90. [PMC free article: PMC1259840] [PubMed: 8376204]
Pelvis (anatomy) | it's... What is the pelvis (anatomy)?
This term has other meanings, see Taz.
Pelvis (lat. pelvis ) is a part of the human skeleton (and other vertebrates) located at the base of the spine, which provides attachment to the body of the lower limbs, and is also a support and a bone receptacle for a number of vital organs.
Contents
|
Pelvic bones
The base of the pelvis is formed by two pelvic bones, the sacrum and the coccyx, connected by the joints of the girdle of the lower extremities into a bone ring, inside which a cavity is formed containing the internal organs. Up to 16-18 years of age, the bones (iliac, pubic and ischial) are connected by cartilage. Subsequently, ossification occurs and these bones grow together, forming pelvic bone .
Paired pelvic bones are connected in front with the help of the pubic symphysis, and behind are attached by auricular surfaces to the formation of the sacrum of the same name, forming paired sacroiliac joints. Each of the pelvic bones, in turn, is formed by three components: the ilium, the ischium and the pubic bone, the bodies of which on the outer surface form the acetabulum - the articular fossa for the femoral head.
The pelvic cavity
The pelvis is divided into two sections: the upper, wider - large pelvis , and the lower, narrower - small pelvis , separated by border line passing through cape sacrum, 90 08 arcuate lines bones, crests pubic bones and the upper edge of the pubic symphysis.
The pelvic cavity is the lower part of the abdominal cavity, here lie the organs of the lower part of the abdominal cavity; the small pelvis hides the bladder, rectum, and also in women - the uterus with its appendages and vagina, in men - the prostate gland and seminal vesicles. nine0003
Sexual characteristics
In the structure of the pelvis in an adult, sexual characteristics are clearly traced: The female pelvis is wider and flattened than that of men, the pelvic cavity of women is also larger. There are special methods for diagnosing a person's sex by qualitative signs of the pelvic bones. [1]
The size and shape of the pelvis are important for the birth process and should be measured and evaluated in all pregnant women. To determine the size of the pelvis, a measuring instrument is used - Martin's pelvis, as well as manual examination through the vagina. nine0003
Muscular frame
The muscles of the abdomen, back and spine are attached to the bones of the pelvis in front and behind, and some of the muscles of the lower extremities originate.
Pathology of the pelvis
The most frequent and dangerous injuries of the pelvis are its fractures, of which the most severe are fractures accompanied by damage to the pelvic organs, as well as dislocations of the pelvic joints.
See also
- Pelvis
Notes
- ↑ A.C. Garmus, 1991
Links
These mysterious symbols: what do the symbols on clothing labels mean? But in vain. If you understand what is written on the labels, T-shirts, dresses, and even jeans will last an order of magnitude longer. Well, let's decipher? :)
Basins
These icons usually come first and indicate washing conditions and rules. So that the thing does not shed and does not sit down, it is advisable to observe the indicated water temperature and washing mode.
Basin at 95 degrees. Boil wash, very hot water. At this temperature, you can wash cotton, linen, white and colored clothes that can withstand high temperatures.
Basin at 60 degrees. Wash in hot water. Such a badge is put on things that cannot be boiled. It can be a cotton T-shirt, thin underwear or polyester clothing. nine0003
Taz 40 degrees. This means that the item can be washed at a temperature not exceeding 40 degrees and with a delicate powder. The badge is put on bright cotton items, colored clothes made of polyester, viscose and synthetics.
Basin at 30 degrees. Most often, this icon is on the label of woolen items that require delicate or gentle washing at low temperatures.
Basin with hand submerged in water. Remember: if you see such an icon on a thing, it means that it can only be washed by hand and in no case in hot water (maximum - 34-40 degrees). And you can’t rub it too hard when you lather, and rinse too thoroughly. Excessive zeal when washing such a thing can damage the delicate fabric. nine0003
Crossed-out basin of water. If an item has this badge, it cannot be washed at all - it must be taken to a dry cleaner, where it will be properly taken care of.
Basin with a strip at the bottom. If there is a straight black line under the basin, it means that you need to choose a gentle mode for washing things. Clothes on the label of which you found this sign should not be subjected to strong mechanical and chemical stress - less water and detergent.
Basin with two stripes at the bottom. nine0114 Two stripes under the basin indicate that when washing you need to use a lot of water, but less detergent.
Squares
These symbols tell you how to properly dry the item so that it lasts longer.
An empty box means that the item can be dried. Crossed out prohibits drying, it usually stands next to the icon that prohibits washing. Such designations, as you already know, are used for fragile fabrics. These items are best taken to the dry cleaners. nine0003
Circle in a square. With this icon, manufacturers advise to dry and wring out the item in the washing machine.
The crossed circle indicates that tumble drying is prohibited.
Circle with dots. The number of dots indicates the temperature at which items can be dried. One circle - low temperature, two - medium, three - high.
Circle with two or three lines is placed on the label of clothes for which it is recommended to use the delicate mode for drying and spinning. nine0003
A square with three vertical lines says that the item should not be wrung out, but should be dried on a line or coat hanger.
Square with one horizontal stripe - after wringing, the item can only be dried on a horizontal surface.
If the square has three more lines in the upper corner , then this item should be dried exclusively in the shade.
Triangles and circles
They tell you which additional cleaners can be used (if any). nine0003
Triangle allows bleaching, but if it is crossed out , bleaching is not allowed.
Circle is dry-cleanable (that is, you can take the item to the dry cleaner). If it's crossed out , no dry cleaning.
The letter in the circle denotes permitted solvents, you don’t need to understand this, in general, it’s not necessary for you - dry cleaners will figure it out themselves.
Irons
Well, everything is clear here. If the iron - then instructions on how to properly iron a thing. nine0003
If the iron is crossed out , the item must not be ironed. Yes, even with a barely warm iron.
Three-point iron means that clothes can be ironed at the highest temperature.